\(\int \frac {(a+b x^2)^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx\) [843]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 372 \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=-\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3}-\frac {2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \sqrt {e x} \sqrt {c+d x^2}}{5 c d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {\left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}} \]

[Out]

2/5*b^2*(e*x)^(3/2)*(d*x^2+c)^(1/2)/d/e^3-2*a^2*(d*x^2+c)^(1/2)/c/e/(e*x)^(1/2)-2/5*(3*b^2*c^2-5*a*d*(a*d+2*b*
c))*(e*x)^(1/2)*(d*x^2+c)^(1/2)/c/d^(3/2)/e^2/(c^(1/2)+x*d^(1/2))+2/5*(3*b^2*c^2-5*a*d*(a*d+2*b*c))*(cos(2*arc
tan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))*Elliptic
E(sin(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(1/2))*((d*x^2+c)/(c^(1/2)+x*d^
(1/2))^2)^(1/2)/c^(3/4)/d^(7/4)/e^(3/2)/(d*x^2+c)^(1/2)-1/5*(3*b^2*c^2-5*a*d*(a*d+2*b*c))*(cos(2*arctan(d^(1/4
)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))*EllipticF(sin(2*ar
ctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(1/2))*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^
(1/2)/c^(3/4)/d^(7/4)/e^(3/2)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {473, 470, 335, 311, 226, 1210} \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=-\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}-\frac {\left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (3 b^2 c^2-5 a d (a d+2 b c)\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}+\frac {2 \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (3 b^2 c^2-5 a d (a d+2 b c)\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {2 \sqrt {e x} \sqrt {c+d x^2} \left (3 b^2 c^2-5 a d (a d+2 b c)\right )}{5 c d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3} \]

[In]

Int[(a + b*x^2)^2/((e*x)^(3/2)*Sqrt[c + d*x^2]),x]

[Out]

(-2*a^2*Sqrt[c + d*x^2])/(c*e*Sqrt[e*x]) + (2*b^2*(e*x)^(3/2)*Sqrt[c + d*x^2])/(5*d*e^3) - (2*(3*b^2*c^2 - 5*a
*d*(2*b*c + a*d))*Sqrt[e*x]*Sqrt[c + d*x^2])/(5*c*d^(3/2)*e^2*(Sqrt[c] + Sqrt[d]*x)) + (2*(3*b^2*c^2 - 5*a*d*(
2*b*c + a*d))*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt
[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(5*c^(3/4)*d^(7/4)*e^(3/2)*Sqrt[c + d*x^2]) - ((3*b^2*c^2 - 5*a*d*(2*b*c + a*
d))*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^
(1/4)*Sqrt[e])], 1/2])/(5*c^(3/4)*d^(7/4)*e^(3/2)*Sqrt[c + d*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 473

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[c^2*(e*x)^(m
 + 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 \int \frac {\sqrt {e x} \left (\frac {1}{2} a (2 b c+a d)+\frac {1}{2} b^2 c x^2\right )}{\sqrt {c+d x^2}} \, dx}{c e^2} \\ & = -\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3}-\frac {\left (4 \left (\frac {3 b^2 c^2}{4}-\frac {5}{4} a d (2 b c+a d)\right )\right ) \int \frac {\sqrt {e x}}{\sqrt {c+d x^2}} \, dx}{5 c d e^2} \\ & = -\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3}-\frac {\left (8 \left (\frac {3 b^2 c^2}{4}-\frac {5}{4} a d (2 b c+a d)\right )\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 c d e^3} \\ & = -\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3}-\frac {\left (2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 \sqrt {c} d^{3/2} e^2}+\frac {\left (2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right )\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {d} x^2}{\sqrt {c} e}}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 \sqrt {c} d^{3/2} e^2} \\ & = -\frac {2 a^2 \sqrt {c+d x^2}}{c e \sqrt {e x}}+\frac {2 b^2 (e x)^{3/2} \sqrt {c+d x^2}}{5 d e^3}-\frac {2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \sqrt {e x} \sqrt {c+d x^2}}{5 c d^{3/2} e^2 \left (\sqrt {c}+\sqrt {d} x\right )}+\frac {2 \left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}}-\frac {\left (3 b^2 c^2-5 a d (2 b c+a d)\right ) \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 c^{3/4} d^{7/4} e^{3/2} \sqrt {c+d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.08 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.31 \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\frac {x \left (2 \left (-5 a^2 d+b^2 c x^2\right ) \left (c+d x^2\right )+2 \left (-3 b^2 c^2+10 a b c d+5 a^2 d^2\right ) \sqrt {1+\frac {c}{d x^2}} x^2 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-\frac {c}{d x^2}\right )\right )}{5 c d (e x)^{3/2} \sqrt {c+d x^2}} \]

[In]

Integrate[(a + b*x^2)^2/((e*x)^(3/2)*Sqrt[c + d*x^2]),x]

[Out]

(x*(2*(-5*a^2*d + b^2*c*x^2)*(c + d*x^2) + 2*(-3*b^2*c^2 + 10*a*b*c*d + 5*a^2*d^2)*Sqrt[1 + c/(d*x^2)]*x^2*Hyp
ergeometric2F1[-1/4, 1/2, 3/4, -(c/(d*x^2))]))/(5*c*d*(e*x)^(3/2)*Sqrt[c + d*x^2])

Maple [A] (verified)

Time = 3.09 (sec) , antiderivative size = 258, normalized size of antiderivative = 0.69

method result size
risch \(-\frac {2 \sqrt {d \,x^{2}+c}\, \left (-b^{2} c \,x^{2}+5 a^{2} d \right )}{5 c d e \sqrt {e x}}+\frac {\left (5 a^{2} d^{2}+10 a b c d -3 b^{2} c^{2}\right ) \sqrt {-c d}\, \sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \left (-\frac {2 \sqrt {-c d}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}+\frac {\sqrt {-c d}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}\right ) \sqrt {e x \left (d \,x^{2}+c \right )}}{5 c \,d^{2} \sqrt {d e \,x^{3}+c e x}\, e \sqrt {e x}\, \sqrt {d \,x^{2}+c}}\) \(258\)
elliptic \(\frac {\sqrt {e x \left (d \,x^{2}+c \right )}\, \left (-\frac {2 \left (d e \,x^{2}+c e \right ) a^{2}}{e^{2} c \sqrt {x \left (d e \,x^{2}+c e \right )}}+\frac {2 b^{2} x \sqrt {d e \,x^{3}+c e x}}{5 e^{2} d}+\frac {\left (\frac {2 a b}{e}+\frac {d \,a^{2}}{c e}-\frac {3 b^{2} c}{5 e d}\right ) \sqrt {-c d}\, \sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \left (-\frac {2 \sqrt {-c d}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}+\frac {\sqrt {-c d}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}\right )}{d \sqrt {d e \,x^{3}+c e x}}\right )}{\sqrt {e x}\, \sqrt {d \,x^{2}+c}}\) \(279\)
default \(\frac {10 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, E\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c \,d^{2}+20 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, E\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{2} d -6 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, E\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{3}-5 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, F\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c \,d^{2}-10 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, F\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{2} d +3 \sqrt {2}\, \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, F\left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{3}+2 b^{2} c \,d^{2} x^{4}-10 a^{2} d^{3} x^{2}+2 b^{2} c^{2} d \,x^{2}-10 c \,a^{2} d^{2}}{5 \sqrt {d \,x^{2}+c}\, d^{2} e \sqrt {e x}\, c}\) \(595\)

[In]

int((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*(d*x^2+c)^(1/2)*(-b^2*c*x^2+5*a^2*d)/c/d/e/(e*x)^(1/2)+1/5*(5*a^2*d^2+10*a*b*c*d-3*b^2*c^2)/c/d^2*(-c*d)^
(1/2)*((x+(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2)*(-2*(x-(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2)*(-x/(-c*d)^(1/2)*
d)^(1/2)/(d*e*x^3+c*e*x)^(1/2)*(-2*(-c*d)^(1/2)/d*EllipticE(((x+(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2),1/2*2^(1
/2))+(-c*d)^(1/2)/d*EllipticF(((x+(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2),1/2*2^(1/2)))/e*(e*x*(d*x^2+c))^(1/2)/
(e*x)^(1/2)/(d*x^2+c)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.26 \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\frac {2 \, {\left ({\left (3 \, b^{2} c^{2} - 10 \, a b c d - 5 \, a^{2} d^{2}\right )} \sqrt {d e} x {\rm weierstrassZeta}\left (-\frac {4 \, c}{d}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, c}{d}, 0, x\right )\right ) + {\left (b^{2} c d x^{2} - 5 \, a^{2} d^{2}\right )} \sqrt {d x^{2} + c} \sqrt {e x}\right )}}{5 \, c d^{2} e^{2} x} \]

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

2/5*((3*b^2*c^2 - 10*a*b*c*d - 5*a^2*d^2)*sqrt(d*e)*x*weierstrassZeta(-4*c/d, 0, weierstrassPInverse(-4*c/d, 0
, x)) + (b^2*c*d*x^2 - 5*a^2*d^2)*sqrt(d*x^2 + c)*sqrt(e*x))/(c*d^2*e^2*x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.45 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.40 \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\frac {a^{2} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {d x^{2} e^{i \pi }}{c}} \right )}}{2 \sqrt {c} e^{\frac {3}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} + \frac {a b x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {d x^{2} e^{i \pi }}{c}} \right )}}{\sqrt {c} e^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} + \frac {b^{2} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {d x^{2} e^{i \pi }}{c}} \right )}}{2 \sqrt {c} e^{\frac {3}{2}} \Gamma \left (\frac {11}{4}\right )} \]

[In]

integrate((b*x**2+a)**2/(e*x)**(3/2)/(d*x**2+c)**(1/2),x)

[Out]

a**2*gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), d*x**2*exp_polar(I*pi)/c)/(2*sqrt(c)*e**(3/2)*sqrt(x)*gamma(3/4))
+ a*b*x**(3/2)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), d*x**2*exp_polar(I*pi)/c)/(sqrt(c)*e**(3/2)*gamma(7/4)) +
b**2*x**(7/2)*gamma(7/4)*hyper((1/2, 7/4), (11/4,), d*x**2*exp_polar(I*pi)/c)/(2*sqrt(c)*e**(3/2)*gamma(11/4))

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2}}{\sqrt {d x^{2} + c} \left (e x\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^2/(sqrt(d*x^2 + c)*(e*x)^(3/2)), x)

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2}}{\sqrt {d x^{2} + c} \left (e x\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((b*x^2+a)^2/(e*x)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2/(sqrt(d*x^2 + c)*(e*x)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^2}{(e x)^{3/2} \sqrt {c+d x^2}} \, dx=\int \frac {{\left (b\,x^2+a\right )}^2}{{\left (e\,x\right )}^{3/2}\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int((a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(1/2)),x)

[Out]

int((a + b*x^2)^2/((e*x)^(3/2)*(c + d*x^2)^(1/2)), x)